Contact Us
Science Lab

Science Lab

Science Lab

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments. Explore interactive tutorials and application notes, discover the basics of microscopy as well as high-end technologies – become part of the Science Lab community and share your expertise!

Principles of Multiphoton Microscopy for Deep Tissue Imaging

Basics of multiphoton microscopy. This tutorial explains the principles of multiphoton microscopy for deep tissue imaging. Multiphoton microscopy uses excitation wavelengths in the infrared taking…

DIVE Multiphoton Microscope Image Gallery

Today’s life science research focusses on complex biological processes, such as the causes of cancer and other human diseases. A deep look into tissues and living specimens is vital to understanding…
Colon tumor cells, fluorescently labelled and lineage traced from a multicolor tracer.

Multiphoton Microscopy – a Satisfied Wish List

The colorful picture shows colon tumor cells, fluorescently labelled and lineage traced from a multicolor tracer. The gray color codes for the second harmonic generation (SHG) signal from Collagen 1.…
Multiphoton microscopy of an unstained mouse skin section acquired using the 4Tune detector.

Mission Impossible Accomplished: Tunable Colors for Non-descanning Detection

Leica Microsystems’ 4Tune detector, the key component of the SP8 DIVE Deep In Vivo Explorer, provides spectrally tunable image recording with non-descanning detection. An innovative solution for…
„Confetti-Mouse“, taken with the 4Tune spectral detector of Leica’s Deep in-vivo Explorer SP8 DIVE.

Laser Beam Shaping for Multicolor Multiphoton Microscopy

Multiphoton Microscopy is one of the current hot topics in life science research. The new Leica TCS SP8 DIVE from Leica Microsystems presents a series of beneficial new innovations, including a freely…
Multicolor image of a Confetti Mouse recorded with the new SP8 DIVE with the 4Tune spectral detector. The adaptation to the transgenic markers allows to achieve more contrast and depth for multi-color in vivo deep imaging. Sample courtesy of Jacco van Rheenen, University of Utrecht, NL.

About the Most Important Considerations When Imaging Deep Into Mouse Tissue

When operating a confocal microscope, or when discussing features and parameters of such a device, we inescapably mention the pinhole and its diameter. This short introductory document is meant to…

BABB Clearing and Imaging for High Resolution Confocal Microscopy

Multipohoton microscopy experiment using Leica TCS SP8 MP and Leica 20x/0.95 NA BABB immersion objective. Understanding kidney microanatomy is key to detecting and identifying early events in kidney…
© wowomnom – Fotolia.com

From Light to Mind: Sensors and Measuring Techniques in Confocal Microscopy

This article outlines the most important sensors used in confocal microscopy. By confocal microscopy, we mean "True Confocal Scanning", i.e. the technique that illuminates and measures one single…
Scroll to top